ON A CLASS OF TRANSITIVE PERMUTATION
GROUPS OF PRIME DEGREE p = 4n + 1

BY
DAVID CHILLAG

ABSTRACT

Suppose G is a nonsolvable transitive permutation group of prime degree p,
such that l Ng(P) I = p(p—1) for some Sylow p-subgroup P of G. Let ¢ be a
generator of the subgroup of Ng(P), fixing one letter (it is easy to show that
this subgroup is cyclic). Assume that G contains an element j such that
j~1gj = ¢*?*+1)/2 Weshall prove that for almost all primes p of the form

= 4n+1, a group that satisfies the above conditions must be the symmetric
group on a set with p elements.

Introduction
Let p be an odd prime. Lst GF(p) be the field with p elements.

DerINITIONS. Let x & GF(p). We shall say that s(x) =+ if x is a quadratic
residue modulo p, s(x) = — if x is a quadratic nonresidue modulo p and s(0) =
+. We also define:

§(X15 %2500 5%,) = (5(x1),5(x2), ... ,5(x,)),
where x;e GF(p), i = 1,2, ,n.
Let A, be the number of different x’s in GF(p) such that:
s(xx+ 1, x+kx+k+D)=(—,+,,+,—)®» k=012,
We shall say that xe A, if xe GF(p) and x satisfies (*).

A prime p is called an A-prime if p is of the form p = 4n+ 1 and there
exists k # 0,1,2,3,5,11 such that A, # 0.

EXAMPLES.

i) By a theorem of A. Brauer [2], there exists N such that every prime p of
the form p=4n+1, p > N, is an A-prime.

ii) If p = 24n +1 then p is an A-prime as s(— 6, — 5, —4,-3,—-2,—-1,0, 1,
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2,3,4,56) =(+*+++ + + + + + +*+),s0¢ither 4; # Oor 4, # 0 for
some k = 13,

iii) If p=2840n+m, m = 29, 149,221,389,701, 821, then 3e A, # 0 and
p is an 4-prime,

iv) As in examples (ii) and (iii), we can use quadratic reciprocity and indices
tables to construct sequences of A-primes and to check whether a prime is an 4-

prime or not.

NoTtATION. The stabilizer of iy,i,, i, in a group H is denoted by H;
The centralizer and normalizer of a subgroup H of G will be denoted by C;(H)
and N g(H) respectively. We denote by S, and AL, the symmetric and the altérna—
ting groups of degree p, respectively.

.
iri2" iy

DeriNiTIONs G will be said to satisfy (p*) if G is a nonsolvable transitive
permutation group of degree p such that ]NG(P)I = p(p — 1) for some Sylow
p-subgroup P of G.

We shall prove that (N4(P)) is a cyclic group. Denote by g a generator of
(N4(P)),- G will be said to satisfy (p**) if G satisfies (p*) and there exists an
element jeG such that j~1qj = q®#*12,

By [4, p. 618, 2.17(a)] we see that if G satisfies (p*), then G is triply-transitive.
We shall prove;

THEOREM 1. If pis an A-prime and G satisfies (p**) then G coincides with S,
Theorem 1 and the above result of Brauer [ 2] yield the following:

COROLLARY 1. There exists N such that if p = 4n+ 1 is a prime greater
than N and G satisfies (p**), then G coincides with S,
Theorem 1 and examples (ii) and (iii) yield:

COROLLARY 2. If p is a prime of the form p = 24n + 1 and G satisfies (p**),
then G coincides with S,.

COROLLARY 3. If p is a prime of the form p=840n+ m, m = 29,149,221,
389,701, 821 and G satisfies (p**), then G coincides with S,

In the last section we shall see that in some classes of primes, the definition of
an A-prime can be generalized and Theorem 1 still holds.

This paper is partly based on a part of the author’s M. Sc. thesis at the University
of Tel Aviv. The author wishes to express his appreciation of his advisor, Profes-
sor M. Herzog, for his devoted guidance and encouragement,
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1. The permutation R and its cycle structure

Let p be a prime of the form p = 4n + 1; then, s(x) = s(— x). We shall use the
arithmetic rules of quadratic residues freely, We write £ = f for h = f(mod p).

LemMA 1.1. Ifxed,thenx £ —(x +c¢), foreveryc < k+ 1,

PrOOF. Suppose x = —(x+c); then x =(p—¢)/2 if ¢ is odd and x =p—¢/2
if cis even. If x = p—c/2, then x+ ¢ = p+¢/2 and s(x) = —imply that
s(x +¢) = 5(¢/2) = s(— ¢/2) = s(x) = —. But ¢ < k+ 1; hence, x ¢ 4, a con-
tradiction. If x = (p — ¢)/2 and s(2) = +,thenx + ¢ = (p+¢)/2 and s(x + ¢) =
s(p+c)=s(c) =s(p—c) =s(p—c)2) =s(x) = —, which is again a contradic-
tion to xe A, since c < k+1. If x = (p — ¢)/2 and s(2) = —, then s(x + ¢) =
—s(p+c)=—s(c) =—s(p—c) = s(p~c¢)/2) = s(x) = —, which is a contradic-
tion,

DEerINITION Let R be the function:

R : GF(p) - GF(p), such that

x+1 if s(x+1)=+
R(x) = { for every x e GF(p).

—(x+Dif s(x+1)=—
Clearly, R is a permutation on GF(p). We shall write R.c.s. for: ““The cycle structure
of R contains---"’,

In order to get information about the cycle structure of R, we shall divide the
set of primes of the form 4n + 1 into four subsets according to the quadratic
character of 2 and 3.

Case(a). p =4n+ 1,nisevenand s(3) = —. Here we have s(+1) = 5(42) =
+, s( £3)=—. Hence x % — (x +k), k =1, 2,4, 8,9 for every x such that s(x) =
—. (For example x 3 —(x + 8) because otherwise, x = p — 4 which implies
s(x) = +.)

(al) If xeAd, then R(x) = —(x+ 1) and R*(x) = x; therefore, R.c.s. the
2-cycle (x, —(x + 1)).

(@2) If xe Ay, then R(x) =x+1, R¥(x) = —(x+2), R¥(x)= ~(x + 1),
R*(x) = x, and because of x £ —(x+k), k = 1,2, R.cs. the 4-cycle (x,x + 1, —
(x+2),~(x+1).

(a3) If xed,, then R.cs. the 6-cycle (x,x + 1,x +2, ~ (x + 3), — (x + 2),
—(x + 1)), except when x = —(x + 3) which implies x = (p—3)/2 which actually
satisfies x € 4, In this case R.c.s. the 3-cycle (x,x + 1,x + 2).
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(a4) If xe A;, then R.c.s. the 8-cycle (x, x+ 1, x + 2,x + 3,—(x + 4),—(x + 3),
—(x +2), — (x + 1)), because x Z — (x +4) and Lemma 1.1.

(a5) If xe A4, then R.cs. the 10-cycle (x,x + 1,x +2,x + 3,x + 4, — (x + 5),
—(x+4),—-(x+3),—-(x+2),—(x+1)). To show this we need to show only
(because of Lemma 1.1) that x =% — (x + 5). Suppose not; then, x = (p — 5)
and s(x + 1) = s(3) = —, which contradicts the fact that xe A,.

(a6) If xe A, then R.c.s. the 12-cycle (x,x + 1, ,x + 5, — (x + 6), —(x + 5),
o, —(x + 1)), except when x = — (x + 6) which implies x = p—3 which satisfies
x e As. In this case R.c.s. the 6-cycle (x,x + 1,--« x + 5). (Here we use Lemma
1.1 freely.)

(a7) If xe Ag, then R.c.s. 14-cycle. We need to show only that x & —(x + 7).
Suppose not; then x = (p—7)/2 and s(x + 2) = s(3) = —, which is a contradiction
to xe 4,.

(a8-a12) If xe A4;, k=17,8,9,10, 11, then as above we can check that xe A,
implies x £ — (x + k + 1); hence (by Lemma 1.1), we obtain:R.c.s. the 2(k + 1)-
cycle (x,x+ 1, -, x+k,—(x+k+1),—(x+k),,—(x+1),k=73809,10,
11.

(al3) If xe 4,, k > 11, then R.c.s. a-cycle, @ > 12, & # 24. In this last case
the cycle is (x,x +1,---,x + k,-+-). By Lemma 1.1, « = 24 can occur only when
k=23and x = — (x + 24), which implies x = p— 12 and s(x + 9) = s(3)=—,
which contradicts x € A,;. Hence & = 24 does not occur.

Using the same procedure we consider the remaining cases:

Case (b). p=4n+1, nisevenand s(3) = +.

Case (¢). p=4n+1, nisoddands(3) = +.

The results of the above consideration of the three cases are collected in the

following lemma.

LemMA 1.2. If xe A, then:
A) Ifk+#0,1,2,3,511, then R.c.s. a-cycle, o }24
B) Ifk=0,1,2,3,511, then R.c.s. the a-cycle, « = 2(k + 1), (oc|24):
Gx+ 1, x+k,—(x+k+1),—(x+ k), —(x + 1)),
except in the cases:
i)nis even s3) = —, k=2, x=(p-3)2
niseven s(3) = —, k=5, x= p-3
i) nisodd k=0, x=4p—-1)
nisodd k=3, x = p—2.
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In these exceptional cases, & = k+ 1|24 and the a-cycle is (x,x+ 1,---, x + k).
The following lemma obviously holds because s(x) = s(—x):
Lemma 1.3. If xeAd,, k=0,1,2,3,511, then:
A) If x is not an exceptional case, then there exists exactly one y # X,
y€ A, such that:

xx +Lx+2, - x+k, —(x+k+1),-(x+k),—(x+1)=
y+Ly+2,y+k, - +k+1),-@+k),,—(@+D).

(R.c.s. this cycle by Lemma 1.2 (B).)

B) If x isan exceptional case, then there isno y = x in GF(p) such that

Gex + Lo, x +k)y = (p,y +1,-,y+ k).
(Res. (x,x+1,---,x + k), by Lemma 1.2 (B).)

PRrOOF.

A y=—-(x+k+1). .

B) This can be checked in each exceptional case. (For example, if k = 3,
x = p—2and yissuch that R.c.s. (x,x + 1,x + 2,x + 3) = (y,y + L,y + 2,y + 3),
then R(y+3)=y,s0 y=y+4or y = —(y+4) (by definition of R); hence,
y=—-@+4andy=p-2=x)

2. Groups containing R

Let G be a permutation group over Q, = {a;,a,,,a,}. We take GF(p) as
Q, in order to facilitate the calculation.

LemMA 2.1, If pis an odd prime and G satisfies (p*), then G is 3-transitive
and (N (P)), is a cyclic group of order p— 1.

Proor. G is 3-transitive by [4], p. 618, 2.17(a)]. P is a transitive cyclic group.
Therefore Cg4(P) = P. N4(P) is a transitive group of prime degree and therefore
(N4(P)), is a maximal subgroup of Ng(P); hence, N (P) = P(N4(P)),. But
P N(NgP)), = (1> and consequently

Ne(P) _ No(P) _
C::(P) - 1(_-;, — (NG(P))a

is a cyclic group since it lies in Aut (P). Obviously |(N&(P)),

=p-—1.

LemMmA 2.2. If pis a prime, p > 3, and G satisfies (p**), then G contains
the permutation R and q is an odd permutation.

Proor. Obviously G = PG,. Write j = p,g,, where p,eP, g,€G, and put
P2 =4q7'py"'qp,; then p,eP. But j~'gjeq) implies j~'gj = gi'qp,g, €
{(q) = G, and consequently p,e G, N P = {1D.
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Therefore, ge C4(P;) and because of Cy(P) = P, we must have p, = 1.
Hence, je G,. N4(P) is clearly a solvable transitive group whence [8, p. 29,
11. 6] implies that (N o(P))s=<qys = {1}, a # B. But G, is transitive on GF(p) —
{o} and |q| = p — 1 (Lemma 2.1); therefore, G, = {(q) G,5, and we can assume
that je G,5. We put P = {p) and take (x)p, (x)q and (x)j as analytic forms of
p,q and j on GF(p) respectively. (In this proof only permutations act from the
right side.) We may assume that (x)p = x + 1. Since P is transitive on GF(p),
there exists he P such that (a)h = 0. Therefore {(g") = (Ng{(P));. Hence, by
replacing q by 4", B by B(h), and j by j* if necessary, we can assume that 0(q) = 0.
Let f be an integer such that pg = gp’. As C4(P) =P and |g| = p—1,fisa
primitive root modulo p. But pg = gp”implies (x + 1)g = (x)q +£. As 0(g) = 0,
by induction we obtain (x)g = fx. Therefore g is a (p — 1)-cycle, hence it is an
odd permutation. The relation jg> = g2j, which holds, implies that (f? — 1) (0)j =
0. But p > 3, hence (0)j = 0. Since {g) is transitive on GF(p) — {0}, there exists
te{g) such that ()t = 1. Therefore, (Ne(Kq2)op)' = (N6({g>))o1, and by
replacing j by j'if necessary, we can assume (1)j = 1. The relation j~1gj = q»*1)/2
and the congruence f ™% = —1 (mod p) yield: (fx)j=—f-(x)j. If x € GF(p),
x # 0, and s(x) = +, then x = f* for some r, r even and if s(x) = —, then
x = f, r odd. Therefore, since (f7)j = (—f)(L)j = (-1)f",

x if s(x) =+
) = { _
=X if s(x) = —,

and pj is the permutation R as (x)pj = (x +1)j. The lemma is proved.

DEeFINITION. If p = 4n + 1, then p is a sum of two squares, p = a?+ b?, Sup-
pose b is even; then, a®> = 1 (mod 4), hence we can choose a = + { = }{mod 4),
where (g is the Legendre symbol. Such an a is called odd base of p.

LeMMA 2.3. Let p be a prime of the form p = 4n+ 1, and let a be the odd
base of p. Then:

4o=3p-1) n
2—_—2;-}-—1 if n is even

A4, = )]
Ez—a-_?_ if nis odd

8
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f%‘—ls— if n is even
Ay +34; 2 3
E——?—g——tg— if nis odd .

ProoF. We recall that here we have (9) = + 1, but 44 and A4, are unchanged
if we either interpret (9) as zero or do not define it at all. We find (1) in [7, p. 97,
8b]. We now take (g) as zero, (only for the proof of (2)). Then:

aa(-0) =5 2, (0-G) + 5) (- (57)):
2 ()=

s G049 40 (mod p)

xeGF (p) p
which is [7, p. 97 8a], we obtain:
2
A1+—1(1—(—))= p+1+1 5 (x(x+l)(x+2)).
2 ¥4 8 8 x€GF(p) p
Now Jacobastal’s formula [3, p. 45 (144)] and the fact that

By

which is trivial and

(%)_{1zfniseven
p —1 if nis odd

yield (2). (Note that in [ 3] @, the odd base, is taken as a = — ( z) mod 4), and
. p
(;—)) =0 [3, (1) p. vii])
An element x € GF(p) satisfies x € 4;, for some k, if and only if s(x) = — and

x € A; for exactly one k. Therefore, 4y + A; + A, + - is the number of quadratic
nonresidues modulo p. Hence:

Ao+ Ay + 4, + - =3p-1). )

To each xe A;, correspond the following j + 1 elements of GF(p): x,x +1,--,
x + j. In this way, there are (j + 1)4; elements corresponding to 4;,j = 0, 1,2, ...,
and each ye GF(p) is exactly one of the (j+ 1)4; elements corresponding to
exactly one A;. Therefore:

A0+2A1 +3A2 +"' = p- (11)
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But A,= 1(p — 1); therefore, (i) yields:

A+ A, + A3+ =Hp-1). (iii)
Subtracting (i) from (ii) yields:

A +24,+345+ - =3p+ 1. (iv)
Subtracting (iii) from (iv) yields:

Ay +245 434, + - =1p+3). )]
Subtracting (iii) from (v) yields:

1+ A4, = A;+24,+ 345+ . (vi)

Substituting A4, into (iii) yields:

p+2a-3
8 if n is even
A+ As+ Ay + o = 4)
ilzglis— if nis odd.
Substituting A4, into (vi) yields:
p—_—28€+—9 if n is even
Ay +24, + 345+ - = )]
”"2; 1o is odd.

Subtracting (4) from (5) (in both cases) yields:

3—2a + A, if nis even

A4+2A5+3A6+'”E J’ (6)

L_612—1+A2 if n is odd.

Adding the right side of (6) to the left side of (4) yields:

3—a _p+2a-3

24, + A3 + 5 3 + A5+ 244+ -+ if n is even

2A2+A3+——1—a=p+2a+5

Therefore, (4, = 0), we get:

> 3 + As + 246 + -+ if n is odd,

85
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3_;_a+2A2+A3_>__£—§ﬂifniseven
“2‘1 24,4 4, 2 p—t%éii—s-ifnis odd,

and (3) follows.

PrOOF OF THEOREM 1. By Lemmas 2.1 and 2.2, G is 3-transitive, R € G and
q is an odd permutation. By Lemma 1.2 (4) and the fact that p is an A-prime, we
get that R2% # 1. Let u be the minimal degree of G. In order to prove the theorem,
it is sufficient to show that degree R%** < (p+1)/3, since then p < (p+1)/3 or
3u < p + 1, which implies 3y £ p hence 3u < p.

Therefore, by the theorem of Bochert [1, p. 185], G contains AL,.But geG is
an odd permutation, hence G = S,. We have to prove only that degree R* <
(p+1)/3. By Lemmas 1.2 (B) and 1.3 of Section 1, we obtain that R?* leaves at
least 8 symbols of GF(p) fixed, where

(24, 44, 6(A,—1)
2ttt 3
0 = 2A0 4A1 6A2 8A3

2tz t3 oy
24o—1) 44, 64, 8(A4;—1)

oy T2 i ion 1).
== +1+ R e e + 4 (in Case (c), Section 1)

Therefore 0 = Ay + 24, + 34, + 44;. We use Lemma 2.3 to obtain 0 = A, +
24, 4+ 3(4, + 34;) + 34;, and

+3+4 % (in Case (a), Section 1)

(in Case (b), Section 1)

AL

11p+ 10a—45 +5_ Az if n is even
16 2
6=
11p+10a—-5 5 PR
_—T + D) A if n is odd.

Therefore:

p—10a+45 3 A; if nis even

16 2
degree R?* < p—0 <
B=EY D 4y if s odd.

Assume n is even. Then we have to prove that
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5p—1(1)g +45 %As <153r_1‘
Suppose not. Then
p £ 119 — 30a — 1204, )]
and
p £ 119 — 30a. ®)

But |a| < \/p; therefore, (8) implies that p < 119 + 30,/p, hence p < 1156.
Bylisting all primes p = 4n + 1, niseven, p < 1156, we see that only the following
satisfy (8): 17, 73, 113, 137, 193, 241, 593, 617, 673, 977 (e.g, if p =97 = 9* +
4%, hence a = 9 and (8) is not satisfied). Therefore p must be one of these. The
prime 17 is not an A-prime, but Theorem 1 holds for p =17 by [5].

If p=113, then 6 € A3, 29 € A;. If p = 137, then 6 € 4,, 58 € A4,.

If p =193, then 22¢€ A4;, 47 € A;. If p =241, then 7 € 4;, 95 €4,.
If p =593, then 57 € A;, 63 € A;. If p = 617, then 6 € 4;, 13 € 4,.
If p =673, then 11 € A3, 47 € A;. If p = 977, then 6 € 45, 55 € A4;.

(These can be checked by indices table). We see that if p is from the list above and
p # 17,73,then A; = 2. Butif xe 45, then — (x + 4) & A;; therefore, A; = 4 > 3.
(For every p in the list we have shown x, ye 4, such that x # —(x +4),x #
—(y + 4)). But p satisfies (7), hence p < 119 — 30a — 360, which implies p <
30 \/E — 241 which is impossible. Thus p = 73, and 22 45, (— 26) € A4; thus,
A3 22 As 73 =324+82% a=-—3 and consequently 73 does not satisfy (7),
a contradiction.
Assume now that n is odd and p # 29. We must show that

Sp—10a +5 SA3 < p+1.

16 2 3
Suppose not. Then
p< —30a—1-1204; and p < 30\/p — 1 — 1204, )
and
p< —30a—~1. (10)

Hence p £ 30\/;)—1, which implies p < 900. By listing all primes p =4n+1,
n is odd, p<900, p#29, we see that only the following satisfy (10): 5, 61, 173,
181, 269, 293, 389, 541, 661. Thus p must be one of them. The prime 5 is not an
A-prime. If p = 61, 181, 541, 661, then +12€ A;. (Here — 2 stands for p —2.)
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If p =173, then —2eA4,, 82e€ A;. If p =269, then —2€ A;, 364, If p=
293, then —2€ A;, 23e A5. If p = 389, then —2€4;, 436 4,. Hence A4; = 2
andby(9)wegetp < 30\/;—241 which is impossible. Again, this is a contradiction.

p=29 thend, =7, 4, =4,4,=0,4; =1, 4, =2and 4, =0,k > 4.
Hence 29 is an A-prime as A, # 0. Degree R** < p—A, —24;— 34, —44; =
10. Therefore, y < 10 (u is the minimal degree of G). If u < 10 = (p+1)/3,
then we finish as in the cases above. Thus we can assume g = 10 which yields
degree R** = 10. But 2e 4y, 10€ 4,, 11€ Ay, 14€ 4y, 17€ Ay, 18€ 4,, 26€ Ay;
8cAd,, 12€ A, 15e4,, 19€A,; 27T = —2€A,; 3e€A,, 21€ A;. Therefore,
using Lemmas (1.2), (1.3), and the fact that 3 € 4,, we obtain: R** = (3,4, 5,6, 7,
21, 22, 23, 24, 25)24, Hence (R**)° = R'?° = 1. We conclude that g = 10, and
G contains a permutain of degree x and of order 5. By [6, p. 646] and u = 10 <
(29/2) (1 — 1/5) — 2/5, we get that G contains AL,o, and G=S,, as g is an odd
permutation. The theorem is proved.

3. Other groups satisfying (P**)

We shall prove that in some cases, the list of forbidden k’s in the definition of
A-prime can be shortened and Theorem 1 still holds.

DEFINITION. Let p be a prime of the form p = 4n+ 1 and let a be the odd base
of p. We shall say that p is an A* prime if: (i) n is even and —o0 < a < 19 or
nisodd and —oo < a < 23, and (ii) There exists k # 0, 1,2, 3, 5 such that 4, # 0.

THEOREM 2. If p is an A*-prime and G satisfies (p**), then G coincides with S,

ProoF. By Theorem 1, we can assume 4, =0, k # 0, 1,2, 3, 5, 11. By the defini-
tion of A*-prime, we must have 4,; # 0, and by the results of Section 1, we get
R*2 3 1, R® # 1 in all cases. As in Theorem 1, we must show only that degree
R'? < (p+1)/3 or degree R® < (p+1)/3. By assumption, using (1), (2), (i) and
(ii) of Lemma 2.3, we get:

p+2a-3
8

Ay + A3+ A5+ A4y = 1%

if n is even

p+2a+5

g if n is odd

and
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4 -;—a if n is even
34, + 445+ 645+ 124,, = (2%
”—‘2““1 if n is odd .
Subtracting three times (1*) from (2*) yields:
(%i? if n is even
A3 + 3A5 + 9A11 = (3*)
%ﬂ if n is odd,
L

Assume n is even, By Section 1, as in the proof of Theorem 1, we obtain that
R'? leaves at least A, + 24, + 34, + 645 symbols of GF(p) fixed. Therefore,
degree R!%2 < p—(A4y+24, + 34, +64s) = (p+a)/2—34, — 645 (Lemma
2.3). If this number is less than (p + 1)/3, the theorem follows. Therefore, it can
be assumed that (p+a)/2 — 34, — 645 = (p+1)/3, which implies that 34, + 64,
< (p+3a-2)/6. By (2¥) we get (p+a)2 = 34, +44;+645+124,, <
(p+3a—2)/6 +44; + 124,,, which implies that

44, + 124, = ”—’;1. 4%

As before, we obtain that R8 leaves at least 4, + 24, + 44, symbols of GF(p)
fixed. Therefore, degree R® < p— (A4, + 24, +445) = (p+a)/2 —44;. We
shall now show that this number is less than (p+1)/3. If not, 445 < (p+3a—2)/6.
By (4%), we get (p+1)/3 < 445 + 124, £ (p+3a—2)/6 + 124,, which implies
that 94,; = (p—3a+4)/8. By (3*) we get (p—~2a+9)/8 =94, + A3+ 345 =
As + 345 + (p—3a+4)/8 which implies 4; + 345 £ (a+5)/8. If 5(3) = +, then
p = 24m +1 and the theorem holds by Corollary 2. Thus, we may assume
5(3) = —, and then — 3e A5 = 1. Therefore, A; < (a+5)/8~3 = (a—19)/8 <0
as a < 19, a contradiction.

If nis odd, we get (Lemmas (1.2) and (1.3)) that R*? leaves at least A, + 24, +
34, + 645 + 4 symbols of GF(p) fixed. Hence (Lemma 2.3), degree R'2 <(p
—(Ag+24; + 34, + 645+ 4))=(p+a+4)/2 - 34, — 645 — 4. If this number is
less than (p+1)/3, the theorem follows. Thus we can assume that (p+a+ 4)/2 —
34, - 645 — 4 = (p+1)/3 which implies 34, + 645 £ (p+3a—14)/6. By (2%),
we get
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44, +124,, 22 ’;13. (5*)

As before, we see (using Section 1) that degree R® < p — (4y + 24, + 44;) =
(p+a+4)/2 — 44;. We must show that this number is less than (p+1)/3. Suppose
it is not. Then 44; < (p+3a+10)/6 and by (5*) we get 94,, < (p—3a+16)/8.
Substituting this into (3*) implies that 4; + 345 < (a—15)/8. But 45 # O since
— 2€ A;; therefore 345 £ (a—15)/8—1 = (a—23)/8 < 0,as a < 23, a contradic-
tion.

DEFINITION. Let p be a prime of the form p = 24n + 17 and let a be the odd
base of p. We shall say that pis an A**-prime if @ < 19 and there exists k # 0,1,2,5
such that 4, # 0.

TuroreM 3. If p is an A**-prime and G satisfies (p**), then G coincides
with S,.

ProOF. By Theorem 2, we can assume A, =0, k#0,1,2,3,5. By definition
of A**-prime, we must have A; # 0. Also, —3e A5 # 0as s(2) = +,5(3) = —.
Hence, Section 1 (a) yields that R® # 1 and R'? # 1. As in Theorem 2, we must
show only that degree R® < (p+1)/3 or degree R'? < (p+1)/3. As in the proof
of Theorem 2, in the case that n is even, we get degree R® < (p+a)/2 —44;.
If this number is less than (p+1)/3, the theorem follows; therefore, we assume
that (p+a)/2 — 44; = (p+1)/3 which implies that 44; < (p+3a—2)/6.

As in the proof of Theorem 2, we obtain that degree R*? < (p+a)/2 — 34, —
6As. Assume p # 17,41; then (p+a)/2—34,—645 < (p+1)/3 as required, because
otherwise 44; + 124,; = (p+1)/3 (which follows as (4*) in the proof of Theorem
2). But 4;, = 0; hence, (p+3a—2)/6 = 44; = (p+1)/3 which implies that p <
3a — 4 < 53 (as a < 19), contradicting p # 17,41. If p = 17, the theorem holds
by [5]. If p =41, As =1 as —3e4s, A4, =2 as 3€ 4,, — 6 A,. Therefore,
degree R12 < (p+a)j2 —34, — 645 < (41+5)2-6—-6 =11 < (p+1)/3 = 14.

Hence the theorem holds for p = 41. (We note that 41 is an A**-prime as 7€ 43
# 0, as 4, = 0, but 41 is nejther an A-prime nor an A*-prime, as 4, = 0,k #
0,1,2,3,5)

ReMARK. If p = 4n + 1 is a specific prime, then we know all 4;’s and can
make better approximation of degree R*4, R*2, R®, as we did for p=41. Examples
of A**-primes are primes of the form: a < 19 and p = (49)*"+1, ¢ = 1,5,7,
11,23, 35,37, as can be checked.
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