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ABSTRACT 

Suppose G is a nonsolvable transitive permutation group of prime degree p, 
such that I N6(P) ] = p(p--l) for some Sylow p-subgroup P of G. Let q be a 
generator of the subgroup of N6(P), fixing one letter (it is easy to show that 
this subgroup is cyclic). Assume that G contains an element ] such that 
j - l q j  = qtp+ 1)/2. We shall prove that for almost all primes p of the form 
p = 4n + 1, a group that satisfies the above conditions must be the symmetric 
group on a set with p dements. 

Introduction 

Let p be an odd prime. L~t GF(p) be the field with p elements. 

DEFXNmONS. Let x e GF(p). We shall say that  s(x) = + i f  x is a quadratic 

residue modulo p, s(x) = - i f  x is a quadratic nonresidue modulo p and s(O) = 

+ .  We also define: 

s(xx, x2 , . . . , x , )  = (s(xx) ,s(x2) , . . .  ,s(xn)), 

where x i e GF(p), i = 1, 2,. . .  ,n. 

Let Ak be the number of  different x's in GF(p) such that: 

s(x,x + 1,...,x + k,x + k +  1) = ( - ,  + , . . . , + , - ) ( * )  k = 0, 1 ,2 , . . .  

We shall say that x E A k  i f  x ~  GF(p) and x satisfies (*). 

A prime p is called an A-prime i f  p is of  the form p = 4n + 1 and there 

exists k # 0, 1, 2, 3, 5, 11 such that A k ~ O. 

EXAMPLES. 

i) By a theorem o f  A. Brauer [ 2 ] ,  there exists N such that  every prime p o f  

the fo rm p = 4n + 1, p > N, is an A-prime. 

ii) I f p  = 24n + 1  then p is an A-prime as s( - 6, - 5, - 4, - 3 ,  - 2 ,  - 1 , 0 ,  1, 
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2, 3, 4, 5, 6 ) = ( + * + + + + + + + + + * + ) , s o e i t h e r A g ~ 0 o r A k ~  0 for 

some k ->__ 13, 

iii) If p = 840n+ m, m = 29, 149,221,389,701,821, then 3~A4 ~ 0 and 

p is an A-prime. 

io) As in examples (ii) and (iii), we can use quadratic reciprocity and indices 

tables to construct sequences of A-primes and to check whether a prime is an A- 

prime or not. 

NOTATION. The stabilizer of il,i2, "" ,in in a group H is denoted by H~1~2... ~. 

The centralizer and normalizer of a subgroup H of G will be denoted by CG(H ) 

and Na(H) respectively. We denote by Sp and ALp the symmetric and the alterna- 

ting groups of degree p, respectively. 

DEnNmONS G will be said to satisfy (p*) if  G is a nonsolvable transitive 

permutation group of degree p such that ]NG(P)] = p ( P -  1)for some Sylow 

p-subgroup P of  G. 

We shall prove that (NG(P)) is a cyclic group. Denote by q a generator of 

(No(P))~. G will be said to satisfy (p**) i f  G satisfies (p*) and there exists an 

element j~  G such that j - l q j  = q(p+~)/2. 

By [4, p. 618, 2.17(a)] we see that if G satisfies (p*), then G is triply-transitive. 

We shall prove; 

TnEORrM 1. I f  p is an A-prime and G satisfies (p**) then G coincides with Sp. 

Theorem 1 and the above result of Brauer [2] yield the following: 

COROLLARY 1. There exists N such that i f  p = 4n + 1 is a prime greater 

than N and G satisfies (p**), then G coincides with Sp. 

Theorem 1 and examples (ii) and (iii) yield: 

COROLLARY 2. If p is a prime of the form p = 24n + i and G satisfies (p**), 

then G coincides with Sp. 

COROLLARY 3. If p is a prime of the form p =  840n+ m, m = 29, 149, 221, 

389, 701,821 and G satisfies (p**), then G coincides with S v. 

In the last section we shall see that in some classes of primes, the definition of 

an A-prime can be generalized and Theorem 1 still holds. 

This paper is partly based on a part of the author's M. Sc. thesis at the University 

of Tel Aviv. The author wishes to express his appreciation of his advisor, Profes- 

sor M. Herzog, for his devoted guidance and encouragement. 
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1. The permutation R and its cycle structure 

Let p be a prime of  the form p = 4n + 1; then, s (x )  = s ( -  x) .  We shall use the 

arithmetic rules of  quadratic residues freely, We write h = f for h -= f (mod p). 

LEMMA 1.1. I f  x ~ Ak then  x ~- - ( x  + c), f o r  every  c < k +  1. 

PROOF. Suppose x - - ( x + c ) ;  then x = ( p - c ) / 2  if  c is odd and x = p - c ~ 2  

f f c i s  even. If  x - p - c ~ 2 ,  then x + c - p + c / 2  and s ( x ) =  - i m p l y  that 

s ( x  + c) = s(c/2) = s ( -  c/2) = s ( x )  = - .  But c < k + 1; hence, x (~ Ak,  a con- 

tradiction. If  x - (p  - c) /2  and s(2)  = +,  then x + c = (p  + c) /2  and s (x  + c) = 

s(p + c) = s(c) = s(p - c) = s(p - c ) / 2 )  = s (x )  = - ,  which is again a contradic- 

tion to x ~ Ak, since c < k + 1. I f  x - (p  - c) /2 and s(2) = - ,  then s ( x  + c) = 

- s(p  + c) = - s (c) = - s(p - c) = s ( p -  c)/2) = s (x )  = - ,  which is a contradic- 

tion. 

DEFINITION Let R be the function: 

R : GF(p)  --, GF(p) ,  such that 

~ x + l  if  s ( x + l ) =  + 
R ( x )  = for every x ~ GF(p) .  

( . -  (x + 1) if s ( x  + 1) - 

Clearly, R is a permutation on GF(p) .  We shall write R.c.s. for: "The  cycle structure 

of  R contains . . . " .  

In order to get information about the cycle structure of  R, we shall divide the 

set of primes of  the form 4n + 1 into four subsets according to the quadratic 

character of  2 and 3. 

Case  (a). p = 4n+  1, n is even and s(3) = - .  Here we have s ( + l )  = s (+2)  = 

+ ,  s( + 3) = - .  Hence x ~ - (x + k), k = 1, 2, 4, 8, 9 for every x such that s (x )  = 

- .  (For  example x ~ - ( x  + 8) because otherwise, x - - - p -  4 which implies 

s(x) = + . )  

(al) I f  x e A  o then R ( x )  =. - ( x  + 1) and R2(x) = x; therefore, R.c.s. the 

2-cycle (x, - (x + 1)). 

(a2) I f  x ~ A1, then R ( x )  =- x + 1, R 2 ( x )  = - ( x  + 2), R 3 ( x )  = - ( x  + 1), 

R 4 ( x )  = x ,  and because of  x 7~ - ( x  + k ) ,  k = 1,2, R.c.s. the 4-cycle ( x , x  + 1, - 

(x  + 2), - (x + 1)). 

(a3) I f  x ~ A2, then R.e.s. the 6-cycle ( x , x  + 1,x  + 2, - ( x  + 3), - (x + 2), 

- ( x  + 1)), except when x = - ( x  + 3) which implies x = ( p - 3 ) / 2  which actually 

satisfies x e A2 In this case R.c.s. the 3-cycle ( x , x  + 1, x + 2). 
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(a4) I f  x e A 3 ,  then R.c.s. the 8-cycle ( x , x +  1 , x  + 2,x  + 3 , - ( x  + 4 ) , - ( x  + 3), 

- ( x  + 2), - (x + 1)), because x ~ - (x + 4) and Lemma 1.1. 

(aS) I f  x e A 4, then R.c.s. the 10-cycle (x ,x  + 1,x + 2,x + 3,x + 4, - (x  + 5), 

- (x + 4), - (x + 3), - (x + 2), - (x + 1)). To  show this we need to show only 

(because o f  Lemma 1.1) that  x ~ - (x + 5). Suppose not ;  then, x - �89 - 5) 

and s(x + 1) -- s(3) -- - ,  which contradicts the fact that  x e A4. 

(a6) I f  x ~ A 5 ,  then R.c.s. the 12-cycle (x ,x  + 1, ... ,x + 5, - (x  + 6), - ( x  + 5), 

�9 . . ,  - (x + 1)), except when x - - (x + 6) which implies x - p - 3  which satisfies 

x e As. In this case R.c.s. the 6-cycle (x ,x  + 1, . . .  x + 5). (Here we use Lemma 

1.1 freely.) 

(a7) I f  x ~ A6, then R.c.s. 14-cycle. We need to show only that  x ~ - ( x  + 7). 

Suppose not ;  then x = ( p - 7 ) / 2  and s(x + 2) = s(3) = - ,  which is a contradict ion 

to x ~ A  6. 

(a8-a12) I f  X ~ A k ,  k = 7 , 8 , 9 ,  10, 11, then as above we can check that  X ~ A k  

implies x ~ - - ( x  + k + 1); hence (by Lemma 1.1),we obtain:R.c.s,  the 2(k + 1)- 

cycle (x, x + 1 , . . . ,  x + k, - (x  + k + 1), - (x + k ) , . . . ,  - (x + 1)), k = 7, 8, 9, 10, 

11. 

(a13) I f  x ~  Ak, k > 11, then R.c.s. ~-cycle, ~ > 12, ~ # 24. In this last case 

the cycle is (x, x + 1 , . . . , x  + k , . . .  ). By Lemma 1.1, ~ = 24 can occur only when 

k = 23 and x - - (x + 24), which implies x = p - 12 and s(x + 9) = s(3)= - ,  

which contradicts x ~ A2a. Hence ~ = 24 does not  occur. 

Using the same procedure we consider the remaining cases: 

Case (b). p = 4n + l ,  n is even a n d s ( 3 ) =  + .  

Case (c). p = 4n + 1, n is odd and s(3) = _ .  

The results of  the above considerat ion o f  the three cases are collected in the 

following lemma. 

LEI~fA 1.2. I f  x ~ A k then: 

A) I f  k # 0, 1, 2, 3, 5, 11, then R.c.s. ~-cycle, ~ X24 

B) I f k = 0 , 1 , 2 , 3 , 5 , 1 1 ,  then R.c.s. the ~-cycle, ~ = 2 ( k + 1 ) ,  (~]24):  

(x ,x  + 1, . . . ,  x + k, - (x  + k + 1), - (x + k) . . . ,  - ( x  + 1)), 

except  in the cases: 

i) n is even s ( 3 ) =  - ,  k = 2, x -  ( p - 3 ) ] 2  

n is even s ( 3 ) =  - , k = 5 ,  x -  p - 3  

ii) n is odd k = O, x - � 8 9  

n is odd k =  3, x - p - 2 . 1  
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In these exceptional cases, ~ = k +  1124 and the ~-cycle is (x, x +  1 , . . . ,x  + k). 

The following lemma obviously holds because s(x) = s ( - x ) :  

LEMMA 1.3. IfXEAk, k = 0,1 ,2 ,3 ,5 ,11,  then: 

A) I f  x is not an exceptional case, then there exists exactly one y ~ x, 

y e A  k such that: 

(x,x + l , x  +2,. . .  ,x +k ,  - (x + k + 1), - (x + k),... , -  (x + 1)) = 

(y,y + 1,y + 2, . . . ,y  + k, - ( y  + k + 1), - (y + k) , . . . ,  - (y + 1)). 

(R.c.s. this cycle by Lemma 1.2 (B).) 

B) I f  x is an exceptional case, then there is no y ~ x in GF(p) such that 

(x,x + 1,... ,x + k) = (y,y + 1, ...,y + k). 

(R.c.s. (x,x + 1,.. . ,x + k), by Lemma 1.2 (B).) 

PRoof. 

A) y = - ( x  + k + l). 

B) This can be checked in each exceptional case. (For example, if k = 3, 

x = p - 2  and y is such that R.c.s. (x,x + 1,x + 2,x + 3) = (y ,y  + 1,y + 2,y + 3), 

then R(y + 3) = y, so y = y + 4 or y = - (y +4) (by definition of R); hence, 

y =  - ( y + 4 ) a n d y = p - 2 = x . )  

2, Groups containing R 

Let G be a permutation group over f~p = {a1,~2,'", ~p}. We take GF(p) as 

~p in order to facilitate the calculation. 

LEMMA 2.1. I f  p is an odd prime and G satisfies (p*), then G is 3- transitive 

and (NG(P)), is a cyclic group of  order p -  1. 

PROOF. G is 3-transitive by [4], p. 618, 2.17(a)]. P is a transitive cyclic group. 

Therefore Co(P ) = P. No(P ) is a transitive group of prime degree and therefore 

(No(P)) ~ is a maximal subgroup of No(P); hence, No(P ) = P(No(P)) ~. But 

P N(No(P)) ,  = (1) and consequently 

No(P) No(P) 
Co(p ) - ~ ~- (No(P)) ~ 

is a cyclic group since it lies in Aut (P). Obviously [ (NG(P)), [ = p - 1. 

LEMMA 2.2. I f  p is a prime, p > 3, and G satisfies (,p**), then G contains 

the permutation R and q is an odd permutation. 

PROOF. Obviously G = PG,. Write j = Pig, ,  where P l e  P, 9, e G, and put 

P2 = q - ' p x - l  qpl; then p2eP .  But j -aqje<q> implies j - ' q j  = g ~ l q p 2 g l e  

<q> c G, and consequently P2 e G, n P = <l>. 
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Therefore, q e C~(P1) and because of C ~ ( P ) =  P, we must have Pl = 1. 

Hence, j E G~. N~(P) is clearly a solvable transitive group whence I8, p. 29, 

11.6] implies that (N~(P))~p =(q)p  = (1) ,  0t ~ ft. But G~ is transitive on GF(p) - 

{~) and I ql = 1)- 1 (Lemma 2.1); therefore, G~ = (q )  G,a, and we can assume 

that j e G~p. We put P = (p )  and take (x)p, (x)q and (x)j as analytic forms of 

p,q and j on GF(p) respectively. (In this proof  only permutations act from the 

right side.) We may assume that (x)p = x + 1. Since P is transitive on GF(p), 

there exists h EP such that (c0h = 0. Therefore ( q h ) =  (NG(P))o" Hence, by 

replacing q by qh, fl by fl(h), a n d j  byf l  if necessary, we can assume that 0(q) - 0. 

Let f be an integer such that pq = q J .  As C~(P) = P and I q I = P - 1, f is a 

primitive root modulo p. But pq = qp~rimplies (x + 1)q = (x)q + f .  As 0(q) = 0, 

by induction we obtain (x)q = f x .  Therefore q is a ( p -  l)-cycle, hence it is an 

odd permutation. The relationjq 2 = q2j, which holds, implies that (f2 _ 1). (0)j = 

0. But 1) > 3, hence (0)j = 0. Since ( q )  is transitive on GF(p) - (0}, there exists 

t e ( q )  such that ([3)t -- 1. Therefore, ((N~((q)))o~)' = (NG((q)))ol,  and by 

replacingj byflifnecessary, we can assume (l)j  = 1. The relation j -  lqj = q (p+ 1)12 

and the congruence f(p-l~12 = - 1  (rood 1)) yield: (fx)j=- - f ' ( x ) j .  If  x ~ GF(p), 

x ~ 0 ,  a n d s ( x ) =  + , t h e n x = f ' f o r  some r, r e v e n a n d  if s ( x ) =  - ,  then 

x = f ' ,  r odd. Therefore, since ( fgJ  = ( - f f ( l ) j  = ( - 1 ) T ,  

{ ~ i f s ( x ) = +  
(x)j = _ ifs(x) - ,  

and pj is the permutation R as (x)pj = (x + 1)j. The lemma is proved. 

DEFINITION. If  p = 4n + 1, then p is a sum of  two squares, 1) = a 2 + b 2. Sup- 
1 " 1 \  

even; then,  a2 - l (mod 4), hence we can choose a - + ~-Z}(mod4),  pose b is 
\1) 1 

where is the Legendre symbol. Such an a is called odd base o f  1 ) .  

LE~tA 2.3. Let 1) be a prime of  the fo rm 1) = 4n + 1, and let a be the odd 

base of  1). Then: 

a o  = �88 - i) 

i f  n is even 

i f  n is odd 

(1) 

(2) 
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/-p + 6a - 15 i f  n is even 

t p  16 A 2 + �89 3 > (3) 
+ 6 a + 9  

16 i f  n is odd . 

PROOF. We recall that here we have (~) = + 1, but Ao and A1 are unchanged 

if we either interpret (~) as zero or do not define it at all. We find (1, in [7, p. 97, 

8hi. We now take (~) as zero, (only for the proof of (2)). Then: 

By 

1 

which is trivial and 

(;))(1 
: o 

xe~F(p) 

y~ (x(x + c) _ 1, c ~- 0 (mod p) 
xE t;/~ (p) P 

which is I-7, p. 97 8a-I, we obtain: 

A 1 + ~  1 -  P = T + g ~ 6 r ( v )  P " 

Now Jacobastal's formula [-3, p. 45 (144)] and the fact that 

1 i f n  is even 

- 1  i f  n is odd 

y i e l d ( 2 ) . ( N o t e t h a t i n [ 3 ] a ,  theoddbase ,  i s t a k e n a s a - -  ( ~ ) m o d 4 ) , a n d  

(~) = 0 [3, (1) p. viii.) 

An element x e GF(p) satisfies x e Ak, for some k, if and only if s(x) = - and 

x e Ak for exactly one k. Therefore, Ao + A~ + A2 + -.-is the number of quadratic 

nonresidues modulo p. Hence: 

A0 + A~ + A2 + . . . .  �89 1). (i) 

To each x ~ A j ,  correspond the following j + 1 elements of GF(p): x, x + 1, ..., 

x + j. In this way, there are ( j  + 1)Aj elements corresponding to Ai, j = 0, I, 2,... ,  

and each y e GF(p) is exactly one of the (j + 1)Aj elements corresponding to 

exactly one A~. Therefore: 

A 0 + 2A~ + 3A2 + . . . .  p. (ii) 
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But A o = � 88  1); therefore, (i) yields: 

At + A2 + Aa + . . . .  �88 - 1). 

Subtracting (i) from (ii) yields: 

A1 + 2A2 + 3A3 + . . . .  �89 + 1). 

Subtracting (iii) from (iv) yields: 

A2 + 2A3 + 3A4 + . . . .  �88 + 3). 

Subtracting (iii) from (v) yields: 

I + A  t = A  a + 2 A  4 + 3 A  5 + ' . . .  

Substituting At into (iii) yields: 

fi 
+ 2 a  - 3  

8 

A2 + A3 + A4 + . . . .  
+ 2 a + 5  

8 

if n is even 

if n is odd. 

(iii) 

(iv) 

(v) 

(vi) 

(4) 

Substituting At into (vi) yields: 

A3 +2A4 + 3A5 + . . . .  r ~ p--~8a 

+ 9 
if n is even 

it n is odd. 

(5) 

Subtracting (4) from (5) (in both cases) yields: 

A4 + 2A5 + 3A6 + ... = f - ~ + A 2  i f n  is even 

~ _ T @ + A 2  i f n  is odd. 

(6) 

Adding the right side of (6) to the left side of (4) yields: 

3 - a  p + 2 a - 3  
2A2 + A3 + - - 2 -  = 8 - + As + 2A6 + "" if n is even 

2A2 + A 3 -t 
- 1 - a  p + 2a + 5 

2 8 
+ A  5 + 2 A  6 + . . .  if n is odd. 

Therefore, (A~ > 0), we get: 
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3--a 
T + 2 A 2 + A 3 >  p + 2 a - 3  i f n i s e v e n  

= 8 
-- a-_____fl 

2 + 2.42 + '13 > p + 2a + 5 if n is odd, 
= 8 

and (3) follows. 

PROOF OF THEOREM 1. By Lemmas 2.1 and 2.2, G is 3-transitive, R E G and 

q is an odd permutation. By Lemma 1.2 (A) and the fact that p is an .4-prime, we 

get that R 24 ~ 1. Let/~ be the minimal degree of G. In order to prove the theorem, 

it is sufficient to show that degree R 24 < (p+l)/3,  since then /t < (p+1)/3 or 

3p < p + 1, which implies 3p < p hence 3# < p. 

Therefore, by the theorem of Bochert [1, p. 185], G contains ALp. But q ~G is 

an odd permutation, hence G = Sp. We have to prove only that degree R 24 < 

(p+l)/3. By Lemmas 1.2 (B) and 1.3 of Section 1, we obtain that R 24 leaves at 

least 0 symbols of GF(p) fixed, where 

= 

"2Ao 4A1 6(A2-1) 8A3 .. 
Y + T + ~ + 3 + T t m  Case (a), Section 1) 

2Ao 4AI 6A 2 8A 3 
T + T + T +  2 

(in Case (b), Section 1) 

2(A o - 1 )  4AI 6A2 8(A 3 -1 )  
~ + I + - T  +-T+  2 - -  + 4 (in Case (c), Section 1). 

Therefore 0 = Ao + 2A1 + 3A 2 + 4A3. We use Lemma 2.3 to obtain 0 = Ao + 

2A~ + 3(A2 + �89 3) -t- ~'43, and 

" l lp+ 10a-45  
16 

0>= 
l ip  + 10a -5  

16 

5 A3 if n is even + )  

5 
+ ~  A3 i f n i s  odd. 

Therefore: 

degree R 24 ~ p-O < 

- 5 p -  10a +45 
16 

5 p -  10a + 5 
16 

5 
- ~  -4a i f n i s e v e n  

5 
2 Aa if n is odd. 

Assume n is even. Then we have to prove that 
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5 p -  10a + 45 5 < p + l  
16 - 2 A3 3 

Suppose not. Then 

and 

p < 119 - 30a - 120A3 (7) 

p < 119 - 30a. (8) 

nut  ]a I < 4P; therefore, (8) implies that p < 119 + 30~/p, hence p < 1156. 

By listing all primes p = 4n + 1, n is even, p < 1156, we see that only the following 

satisfy (8): 17, 73, 113, 137, 193, 241, 593, 617, 673, 977 (e.g, if p = 97 = 92 + 

42, hence a = 9 and (8) is not satisfied). Therefore p must be one of these. The 

prime 17 is not an A-prime, but Theorem 1 holds for p = 17 by 15]. 

I f p = l 1 3 ,  t h e n 6 E A 3 , 2 9  ~ A3. If  p =  137, t h e n 6 r  5 8 e A 3 .  

If  p = 193, then 22~ A3, 47 ~ A 3. If  p -= 241, then 7 ~ A3, 95 r  s. 

I f p = 5 9 3 ,  then 57~A3,  63~A3.  I f p = 6 1 7 ,  then 6 ~ A 3 ,  13 eA3.  

I f p = 6 7 3 ,  then 11 ~ A 3 , 4 7 ~ A  3. I f p = 9 7 7 ,  then 6 z A 3 ,  55~A3.  

(These can be checked by indices table). We see that if p is from the list above and 

p # 17, 73, then Az > 2. But i fx  ~ A3, then - (x + 4) ~ A 3; therefore, Az > 4 > 3. 

(For every p in the list we have shown x, y~  A 3 such that x ~ - ( x  + 4), x 

- (y + 4)). But p satisfies (7), hence p < 119 - 30a - 360, which implies p < 

30~/p - 241 which is impossible. Thus p = 73, and 22~Aa, ( -  26) EA3; thus, 

A3 > 2. As 73 = 3 z +  82, a - - 3  and consequently 73 does not satisfy (7), 

a contradiction. 

Assume now that n is odd and p # 29. We must show that 

5 p -  10a + 5 
16 

Suppose not. Then 

p-< - 3 0 a - l - 1 2 0 A a  
and 

p < - 30a - 1. 

5 p + l  
- ~ A  3 < 

and p _<_ 30x/p - 1 - 120Aa (9) 

(lO) 

Hence p < 30 , / p -1 ,  which implies p < 900. By listing all primes p -- 4n + 1, 

n is odd, p<900,  p#29,  we see that only the following satisfy (10): 5, 61, 173, 

181,269, 293, 389, 541,661. Thus p must be one of them. The prime 5 is not an 

A-prime. If  p = 61, 181, 541, 661, then _+12eA 3. (Here - 2 stands for p - 2.) 
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I f  p = 173, then - 2 e A  a, 8 2 c A  3. I f  p = 269, then - 2 c A  a, 3 c A  a. If  p = 

293, then - 2 e  Aa, 2 3 c A  a. If  p = 389, then - 2 e A a ,  43eAa.  Hence Aa _-> 2 

and by (9) we get p < 30~/p-  241 which is impossible. Again, this is a contradiction. 

I f  p = 29, then Ao = 7, A~ = 4, A 2 -- 0, A a = 1, A4 = 2 and A k = 0, k > 4. 

Hence 29 is an A-prime as A4 # 0. Degree R 24 =< p --Ao -- 2 A 1 -  3A 2 - 4Aa = 

10. Therefore, # < 10 (it is the minimal degree of G). If  It < 10 = (p+1)/3,  

then we finish as in the cases above. Thus we can assume It = 10 which yields 

degree  R 24 --- 10. But 2eAo,  IO~Ao, l l e A o ,  14eAo, 17EAo, 18~A o, 26~Ao;  

8 c A  1, 12eAx, 15eA~,  19eAx;  2 7 - - 2 ~ A a ;  3 c A 4 ,  2 l eA 4 .  Therefore, 

using Lemmas (1.2), (1.3), and the fact that 3 ~ A4, we obtain: R 24 = (3, 4, 5, 6, 7, 

21, 22, 23, 24, 25) 24. Hence (R24) 5 = R 120 = 1. We conclude that # = 10, and 

G contains a permutain of degree tt and of order 5. By [-6, p. 646] and It = 10 < 

(29/2) (1 - 1/5) - 2/5, we get that G contains AL29, and G =  Sp, as q is an odd 

permutation. The theorem is proved. 

3. Other groups satisfying (P**) 

We shall prove that in some cases, the list of  forbidden k's in the definition of  

A-prime can be shortened and Theorem 1 still holds. 

DE~NITION. Let p be a prime of the form p = 4n + 1 and let a be the odd base 

of  p. We shall say that p is an A* prime if: (i) n is even and - ~  < a < 19 or 

n is odd and - ~ < a < 23, and (ii) There exists k # 0, 1, 2, 3, 5 such that A k r 0. 

THEOREM 2. I f  p is an A*-prirne and G satisfies (p**), then G coincides with S w 

PROOF. By Theorem 1, we can assume A k = 0, k r 0, 1, 2, 3, 5, 11. By the defini- 

tion of  A*-prime, we must have A~I # 0, and by the results of Section 1, we get 

R ~ ~ 1, R s ~ 1 in all cases. As in Theorem 1, we must show only that degree 

R 12 < (p+1)/3 or degree R s < (p+l ) /3 .  By assumption, using (1), (2), (i) and 

(ii) of  Lemma 2.3, we get: 

A 2 "1- A 3 -1"- A 5 "}" A~I = 

- p + 2 a - 3  

~ + 2 a + 5  

if n is even 

i f  n is odd 

(1") 

and 
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fp  _-!- a 

3A2 + 4Aa + 6As + 12All = ~ 2  

t P + 2  +4 

Subtracting three times (1") from (2*) yields: 

A 3 + 3 A s + 9 A H  = J p - 2 ~ + l  

L 
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if n is even 

if n is odd.  

if n is even 

if n is odd. 
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(2*) 

(3*) 

Assume n is even. By Section 1, as in the proof of Theorem 1, we obtain that 

R 12 leaves at least Ao + 2A1 + 3A2 + 6As symbols of GF(p) fixed. Therefore, 

degree R 12 < p - ( A  o + 2 A I + 3 A 2 + 6 A s ) = ( p + a ) / 2 - 3 A  2 - 6 A  5 (Lemma 

2.3). If this number is less than (p + 1)/3, the theorem follows. Therefore, it can 

be assumed that (p + a)/2 - 3A2 - 6A5 >- (p + 1)/3, which implies that 3A2 + 6As 

<__ (p+3a-2)/6. By (2*) we get (p+a)/2 = 3Az +4A3 + 6As + 12A1~ =< 

(p+3a-2)/6 +4Aa + 12A~, which implies that 

4A 3 + 12All > p + l  = 3 (4*) 

As before, we obtain that R 8 leaves at least Ao + 2A~ + 4A a symbols of GF(p) 

fixed. Therefore, degree R 8 < p - (Ao + 2A1 + 4A3) = (p+a)/2 - 4A3. We 

shall now show that this number is less than (p+ 1)/3. If not, 4A3 < (p+3a-2) /6 .  

By (4"), we get @+1)/3 < 4Aa + 12A1~ < (p+3a-2)/6 + 12At~ which implies 

that 9All > (p-3a+4)/8. By (3*) we get (p-2a+9)/8 = 9A~ + A3 + 3A5 > 

A3 + 3As + (p-3a+4)/8 which implies Aa + 3A5 < (a+5)/8. If s(3) = +,  then 

p = 24m + 1 and the theorem holds by Corollary 2. Thus, we may assume 

s(3) = - ,  and then - 3 e As > 1. Therefore, A a < (a + 5)/8 - 3 = ( a -  19)/8 < 0 

as a < 19, a contradiction. 

Ifn is odd, we get (Lemmas (1.2) and (1.3)) that R 12 leaves at least Ao + 2A1 + 

3A2 + 6A5 + 4 symbols of GF(p) fixed. Hence (Lemma 2.3), degree R 12 <(p  

- (Ao +2AI + 3A2 + 6A5+ 4))=(p+a+4)/2-  3A 2 - 6A5 - 4. If this number is 

less than (p + 1)/3, the theorem follows. Thus we can assume that (p + a + 4)/2 - 

3A2 - 6A5 - 4 > (p + 1)/3 which implies 3Az + 6A5 < (p + 3 a -  14)/6. By (2"), 

we get 
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4A 3 + 12A11 > p + 13 (5*) 
= 3 

As before, we see (using Section 1) that degree R 8 < p - (Ao + 2A1 + 4A 3) = 

(p + a + 4)/2 - 4A3. We must show that this number is less than (p + 1)/3. Suppose 

it is not. Then 4A 3 < (p+3a+10) /6  and by (5*) we get 9A~1 < ( p - 3 3 + 1 6 ) / 8 .  

Substituting this into (3*) implies that A3 + 3A5 < (a -15) /8 .  But A3 ~ 0 since 

- 2 E Aa; therefore 3A5 < ( a - 1 5 ) / 8 - 1  = ( a -23) /8  < 0, as a < 23, a contradic- 

tion. 

DErINmON. Let p be a prime of  the form p = 24n + 17 and let a be the odd 

base ofp .  We shall say that p is an A**-prime if a < 19 and there exists k ~ 0,1, 2, 5 

such that Ak ~ 0. 

THEOREM 3. I f  p is an A**-prime and G satisfies (p**), then G coincides 

with S v. 

PROOF. By Theorem 2, we can a s s u m e  A k = 0, k-~ 0, 1,2, 3, 5. By definition 

of  A**-prime, we must have A3 ~ 0. Also, - 3 ~ A5 ~ 0 as s(2) = + ,  s(3) = - .  

Hence, Section 1 (a) yields that R 8 ~ 1 and R 12 ~ 1. As in Theorem 2, we must 

show only that degree R s < (p+1)/3 or degree R 12 .( (p+1)/3.  As in the proof  

of  Theorem 2, in the case that n is even, we get degree R s < (p+a)/2  - 4A3. 

I f  this number is less than (p+  1)/3, the theorem follows; therefore, we assume 

that (p+a)/2  - 4A 3 _>_ (p+  1)/3 which implies that 4A a < ( p + 3 a - 2 ) / 6 .  

As in the proof  of  Theorem 2, we obtain that degree R 12 ~ (p+a)/2  - 3A2 - 

6As. Assume p ~ 17, 41; then (p + a ) / 2 -  3A 2 - 6A5 < (p + 1)/3 as required, because 

otherwise 4A3 + 12All > (p + 1)/3 (which follows as (4*) in the proof  of  Theorem 

2). But AI~ = 0; hence, ( p + 3 3 - 2 ) / 6  > 4A3 > (p+1)/3 which implies that p < 

3a - 4 < 53 (as a < 19), contradicting p ~ 17, 41. I f  p = 17, the theorem holds 

by [5] .  I f p  = 41, A5 > 1 as - 3~A5, A2 > 2 as  3 ~ A 2 , -  6 2 A 2 .  Therefore, 

degree R ~2 < (p+a)/2  - 3A2 - 6As < (41+5)/2 - 6 - 6 = 11 < (p+1)/3 = 14. 

Hence the theorem holds for p = 41. (We note that 41 is an A**-prime as 7 e Aa 

0, as A k = 0, but 41 is neither an A-prime nor an A*-prime, as A k = 0, k--fi 

0 ,1 ,2 ,3 ,5 . )  

RElVtARK. If  p = 4n + 1 is a specific prime, then we know all Ak'S and can 

make better approximation of degree R 24, R 12, R a, as we did for p=41 .  Examples 

of  A**-primes are primes of  the form: a < 19 and p = (4q) 2n -k 1, q = 1, 5, 7, 

11,23,35,37, as can be checked. 
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